Energy Materials: Driving the Clean Energy Transition
Energy Materials: Driving the Clean Energy Transition
Energy is everywhere, affecting everything, all the time. And it can be manipulated and converted into the kind of energy that we depend on as a civilization. But transforming this ambient energy (the result of gyrating atoms and molecules) into something we can plug into and use when we need it requires specific materials.
These energy materials 鈥 some natural, some manufactured, some a combination 鈥 facilitate the conversion or transmission of energy. They also play an essential role in how we store energy, how we reduce power consumption, and how we develop cleaner, efficient energy solutions.
鈥淎dvanced materials and clean energy technologies are tightly connected, and at 色花堂 we鈥檝e been making major investments in people and facilities in batteries, solar energy, and hydrogen, for several decades,鈥 said , the David S. Lewis Jr. Chair and professor of aerospace engineering, and executive director of 色花堂鈥檚 Strategic Energy Institute ().
That research synergy is the underpinning of , a gathering of people from academia, government, and industry, co-hosted by SEI, the Institute for Materials (), and the 色花堂 Advanced Battery Center. This event aims to build on the momentum created by , held in March 2023, which drew more than 230 energy researchers and industry representatives.
鈥淲e thought it would be a good idea to expand on the Battery Day idea and showcase a wide range of research and expertise in other areas, such as solar energy and clean fuels, in addition to what we鈥檙e doing in batteries and energy storage,鈥 said , associate professor in the George W. and the , and co-director, with , of the Advanced Battery Center.
Energy Materials Day will bring together experts from academia, government, and industry to discuss and accelerate research in three key areas: battery materials and technologies, photovoltaics and the grid, and materials for carbon-neutral fuel production, 鈥渁ll of which are crucial for driving the clean energy transition,鈥 noted , executive director of IMat and the Hightower Professor of Materials Science and Engineering.
鈥溕ㄌ is leading the charge in research in these three areas,鈥 he said. 鈥淎nd we鈥檙e excited to unite so many experts to spark the important discussions that will help us advance our nation鈥檚 path to net-zero emissions.鈥
Building an Energy Hub
Energy Materials Day is part of an ongoing, long-range effort to position 色花堂, and 色花堂, as a go-to location for modern energy companies. So far, the message seems to be landing. 色花堂 has had more than $28 billion invested or announced in electric vehicle-related projects since 2020. And 色花堂 was recently ranked by U.S. News & World Report as the .
色花堂 has become a major player in solar energy, also, with the announcement last year of a $2.5 billion plant being developed by Korean solar company Hanwha Qcells, taking advantage of President Biden鈥檚 climate policies. Qcells鈥 global chief technology officer, Danielle Merfeld, a member of SEI鈥檚 External Advisory Board, will be the keynote speaker for Energy Materials Day.
鈥淕rowing these industry relationships, building trust through collaborations with industry 鈥 these have been strong motivations in our efforts to create a hub here in Atlanta,鈥 said Yushin, professor in MSE and co-founder of Sila Nanotechnologies, a battery materials startup valued at more than $3 billion.
McDowell and Yushin are leading the battery initiative for Energy Materials Day and they鈥檒l be among 12 experts making presentations on battery materials and technologies, including six from 色花堂 and four from industry. In addition to the formal sessions and presentations, there will also be an opportunity for networking.
鈥淚 think 色花堂 has a responsibility to help grow a manufacturing ecosystem,鈥 McDowell said. 鈥淲e have the research and educational experience and expertise that companies need, and we鈥檙e working to coordinate our efforts with industry.鈥
, associate professor of mechanical engineering and chemical and biomolecular engineering, is leading the carbon-neutral fuel production portion of the event, while , assistant professor in MSE, is leading the photovoltaics initiative.
They鈥檒l be joined by a host of experts from 色花堂 and institutes across the country, 鈥渟ome of the top thought leaders in their fields,鈥 said Correa-Baena, whose lab has spent years optimizing a semiconductor material for solar energy conversion.
鈥淥ver the past decade, we have been working to achieve high efficiencies in solar panels based on a new, low-cost material called halide perovskites,鈥 he said. His lab recently discovered how to . 鈥淚t鈥檚 kind of a miracle material, and we want to increase its lifespan, make it more robust and commercially relevant.鈥
While Correa-Baena is working to revolutionize solar energy, Hatzell鈥檚 lab is designing materials to clean up the manufacturing of clean fuels.
鈥淲e鈥檙e interested in decarbonizing the industrial sector, through the production of carbon-neutral fuels,鈥 said Hatzell, whose lab is designing new materials to make clean ammonia and hydrogen, both of which have the potential to play a major role in a carbon-free fuel system, without using fossil fuels as the feedstock. 鈥淲e鈥檙e also working on a collaborative project focusing on assessing the economics of clean ammonia on a larger, global scale.鈥
The hope for Energy Materials Day is that other collaborations will be fostered as industry鈥檚 needs and the research enterprise collide in one place 鈥 色花堂鈥檚 Exhibition Hall 鈥 over one day. The event is part of what Yushin called 鈥渢he snowball effect.鈥
鈥淵ou attract a new company to the region, and then another,鈥 he said. 鈥淚f we want to boost domestic production and supply chains, we must roll like a snowball gathering momentum. Education is a significant part of that effect. To build this new technology and new facilities for a new industry, you need trained, talented engineers. And we鈥檝e got plenty of those. 色花堂 can become the single point of contact, helping companies solve the technical challenges in a new age of clean energy.鈥